首页> 外文OA文献 >Field-ionization threshold and its induced ionization-window phenomenon for Rydberg atoms in a short single-cycle pulse
【2h】

Field-ionization threshold and its induced ionization-window phenomenon for Rydberg atoms in a short single-cycle pulse

机译:场电离阈值及其诱导电离窗现象   对于短周期单周期脉冲中的里德伯原子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the field-ionization threshold behavior when a Rydberg atom isionized by a short single-cycle pulse field. Both hydrogen and sodium atoms areconsidered. The required threshold field amplitude is found to scale\emph{inversely} with the binding energy when the pulse duration becomesshorter than the classical Rydberg period, and, thus, more weakly boundelectrons require larger fields for ionization. This threshold scaling behavioris confirmed by both 3D classical trajectory Monte Carlo simulations andnumerically solving the time-dependent Schr\"{o}dinger equation. Moresurprisingly, the same scaling behavior in the short pulse limit is alsofollowed by the ionization thresholds for much lower bound states, includingthe hydrogen ground state. An empirical formula is obtained from a simplemodel, and the dominant ionization mechanism is identified as a nonzero spatialdisplacement of the electron. This displacement ionization should be anotherimportant mechanism beyond the tunneling ionization and the multiphotonionization. In addition, an "ionization window" is shown to exist for theionization of Rydberg states, which may have potential applications toselectively modify and control the Rydberg-state population of atoms andmolecules.
机译:我们研究了短单周期脉冲场将Rydberg原子电离时的场电离阈值行为。氢原子和钠原子都被考虑。当脉冲持续时间变得比经典的里德伯格周期更短时,发现所需的阈值场振幅与结合能成比例/反比,因此,弱束缚的电子需要更大的场来进行电离。此阈值缩放行为已通过3D经典轨迹蒙特卡洛仿真和数值求解时间相关的Schr \“ {o} dinger方程得到证实。从一个简单的模型中获得了一个经验公式,并且主要的电离机理被确定为电子的非零空间位移。这种位移电离应该是隧穿电离和多光子电离之外的另一个重要机理。此外,“ “电离窗”显示存在用于里德堡态的电离,它可能具有选择性修饰和控制原子和分子的里德堡态种群的潜在应用。

著录项

  • 作者

    Yang, B. C.; Robicheaux, F.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号